A Review of the Tension between the T2K and $NO\nu A$ Appearance Data and Hints to New Physics

Rahaman, Razzague, Sankar, Universe 8 (2022) 2, 109, arXiv: 2201.03250

Ushak Rahaman

IFIC Instituto de Física Corpuscular (Univ. de Valéncia CSIC)

30th April, 2021

- 1 Evolution of the tension between NO ν A and T2K data
- 2 Resolution of the tension with BSM physics
- 3 Conclusions

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation

 $NO\nu A$ and T2K

Parameter degeneracy

2018 data

2019 data

2020 data

- Resolution of the tension with BSM physics
- 3 Conclusions

1 Evolution of the tension between NO ν A and T2K data Brief introduction to neutrino oscillation

> $NO\nu A$ and T2KParameter degeneracy 2018 data 2019 data 2020 data

- Resolution of the tension with BSM physics
- 3 Conclusions

Neutrino flavour and mixing

- Three neutrino flavours: ν_e , ν_μ and ν_τ .
- They are produced and detected in interactions
- They are called flavour or interaction eigenstates.
- Flavour states mix with each other to form three mass eigenstates ν_1 , ν_2 and ν_3 with masses m_1 , m_2 and m_3 respectively:

$$\begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} = U^{\dagger} \begin{bmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} \tag{1.1}$$

U is a unitary 3 × 3 matrix.

Neutrino flavour and mixing

$$U = \begin{bmatrix} c_{13}c_{12} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - s_{13}c_{12}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{13}c_{23}s_{12}e^{i\delta_{CP}} & c_{23}c_{13} \end{bmatrix}, (1.2)$$

- $c_{ij} = \cos \theta_{ij}$, and $s_{ij} = \sin \theta_{ij}$.
- The neutrino oscillation probabilities depend on three mixing angles: θ_{12} , θ_{13} , and θ_{23} ; two independent mass squared differences: $\Delta_{21}=m_2^2-m_1^2$ and $\Delta_{31}=m_3^2-m_1^2$; and a CP violating phase: δ_{CP} .

Measurement of neutrino mixing parameters

- Long baseline reactor neutrino experiment KamLAND measured $\Delta_{21}=(7.9\pm0.5)\times10^{-5}\,\mathrm{eV}^2$, and $\tan^2\theta_{12}=0.0.4^{+0.10}_{-0.07}$.
- Sign of Δ_{21} was measured to be positive by the synergy of solar neutrino experiments SNO, Super-Kamiokande, and Gallium experiments.
- Short baseline reactor neutrino experiment Daya Bay measured $|\Delta_{31}|=(2.47\pm0.07)\times10^{-3}\,\mathrm{eV}^2$, and $\sin^22\theta_{13}=0.00856\pm0.0029$
- Long baseline accelerator neutrino experiment MINOS measured $|\Delta_{31}| = (2.3 2.5) \times 10^{-3} \, \mathrm{eV}^2$, and $\sin^2 \theta_{23} = (0.35 0.65)$
- Both short baseline reactor experiment and long baseline accelerator experiments measured the magnitude of Δ_{31} , but not the sign.
- Both atmospheric neutrino data, and accelerator neutrino data prefer $\sin^2 2\theta_{23} \simeq 1$.

Values of neutrino oscillation parameters as of June, 2012

Parameters	$bfp{\pm}1\sigma$
$\theta_{12}/^{o}$	$33.36^{+0.81}_{-0.78}$
$\theta_{23}/^{o}$	$40.0^{+2.1}_{-1.5} \oplus \left[50.4^{+1.3}_{-1.3} ight]$
$ heta_{13}/^o$	$8.66^{+0.44}_{-0.46}$
$\delta_{CP}/^{o}$	300^{+66}_{-138}
$rac{\Delta_{21}}{10^{-5}{ m eV}^2}$	$7.50^{+0.18}_{-0.19}$
$\frac{\Delta_{31}}{10^{-3} { m eV}^2} ({\sf N})$	$2.473^{+0.070}_{-0.067}$
$\frac{\Delta_{32}}{10^{-3} \text{eV}^2} (I)$	$\left[-2.427^{+0.042}_{-0.065}\right]$

Table 1: Global best-fit values of neutrino oscillation parameters in June, 2012 [Gonzalez-Garcia et al., arXiv: 1209.3023].

Unknown parameters

- The unknown parameters are: sign of Δ_{31} , octant of θ_{23} and CP violating phase δ_{CP} .
- Depending on the sign of Δ_{31} , there can be two possible mass ordering:
 - 1 Normal hierarchy (NH): $\Delta_{31} > 0$ ($m_3 >> m_2 > m_1$)
 - 2 Inverted hierarchy (IH): $\Delta_{31} < 0 \ (m_2 > m_1 >> m_3)$
- For $\sin^2 2\theta_{23} < 1$, there can be two octants of θ_{23} :
 - 1 Higher octant (HO): $\sin^2 \theta_{23} > 0.5$
 - 2 Lower octant (LO): $\sin^2 \theta_{23} < 0.5$
- Long baseline accelerator neutrino experiments T2K and NO ν A are expected to determine these unknowns.

IO

Ushak Rahaman

Unknown parameters

- These experiments can measure four probabilities:
 - **1** Two disappearance probabilities $P_{\mu\mu}$ and $P_{\bar{\mu}\bar{\mu}}$: improve precision on $|\Delta_{31}|$ and $\sin 2\theta_{23}$.
 - 2) Two appearance probabilities $P_{\mu e}$ and $P_{\bar{\mu}\bar{e}}$: give information on CP violation, mass hierarchy and octant of θ_{23} .

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation

$NO\nu A$ and T2K

Parameter degeneracy

2018 data

2019 data

2020 data

- Resolution of the tension with BSM physics
- 3 Conclusions

$NO\nu A$

- The source for NO ν A experiment is the NuMI beam from the Fermilab [Ayres et al., NO ν A Technical Design report].
- The detector is 14 kT Totally Active Scintillator Detector (TASD) located 810 km away from Fermilab at 0.8° off-axis.
- It was scheduled to have neutrino and anti-neutrino run of 3 years each with a beam power of 700 kW, corresponding to 6×10^{20} POT/year.
- Started taking data in 2014.
- 2017: Neutrino data in both disappearance and appearance mode with 6.05×10^{20} POT. [Adamson et al., arXiv: 1701.0589, 1703.0332]
- 2018: Neutrino data in both disappearance and appearance mode with 8.85×10^{20} POT. [Acero et al., arXiv: 1806.00096]

$NO\nu A$

- 2019: (anti-) Neutrino data in both disappearance and appearance mode with $8.85\,(12.33)\times 10^{20}$ POT. [arXiv: 1906.04907]
- 2020: (anti-) Neutrino data in both disappearance and appearance mode with $1.36\,(1.25)\times10^{21}$ POT. [A. Himmel, Talk given at Neutrino 2020 on 2nd July, 2020]

T2K

- The source for T2K experiment is the J-PARC accelerator in Tokai, Japan.
- The detector is the 22.5 kT fiducial mass Super Kamiokande water Cerenkov located 295 km away from source at 2.5° off-axis.
- Flux peaks at 0.7 GeV which is also the first oscillation maxima.
- Started taking data in 2009.
- 2013: Neutrino data in both disappearance and appearance mode with 6.6×10^{20} POT. [Abe et al., arXiv: 1311.4750, 1403.1532]
- 2015: Anti-neutrino data in both disappearance and appearance mode with 4×10^{20} POT. [Slazgeber et al., arXiv: 1508.0615]
- 2017: (anti-) Neutrino data in both disappearance and appearance mode with $7.252\,(7.531)\times10^{20}$ POT. [Haegel et al. arXiv: 1709.0418]

T2K

- 2019: (anti-) Neutrino data in appearance mode with $1.49\,(1.64)\times 10^{21}$ POT. (anti-) Neutrino data in disappearance mode with $14.7\,(7.6)\times 10^{20}$ POT. [arXiv: 1910.03887, 1807.07891]
- 2020: (anti-) Neutrino data in both disappearance and appearance mode with 1.97 (1.63) \times 10²¹ POT. [P. Dunne, Talk given at Neutrino 2020 on 2nd July, 2020]

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation

 $NO\nu A$ and T2K

Parameter degeneracy

2018 data

2019 data

2020 data

- 2 Resolution of the tension with BSM physics
- 3 Conclusions

Oscillation probability

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 \hat{\Delta} (1 - \hat{A})}{(1 - \hat{A})^2}$$

$$+ \alpha \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\hat{\Delta} + \delta_{CP}) \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta} (1 - \hat{A})}{1 - \hat{A}}, (1.3)$$

 $\alpha = \frac{\Delta_{21}}{\Delta_{31}}$, $\hat{\Delta} = \frac{\Delta_{31}L}{4E}$ and $\hat{A} = \frac{A}{\Delta_{31}}$. A is the Wolfenstein matter term [L. Wolfenstein, Phys. Rev.D17, 2369 (1978)], given by $A = 2\sqrt{2}G_FN_eE$, where E is the neutrino beam energy and L is the length of the baseline. Anti-neutrino oscillation probability $P_{\bar{\mu}\bar{e}}$ can be obtained by changing the sign of A and δ_{CP} in eq. 1.3.

- Oscillation probability depends on sign of Δ_{31} , octant of θ_{23} , and δ_{CP} .
- $P_{\mu e}$ is enhanced if δ_{CP} is in the lower half plane (LHP, $-180^{\circ} < \delta_{CP} < 0$), compared to $\delta_{CP} = 0$.
- $P_{\mu e}$ can be suppressed by the same amount if δ_{CP} is in the upper half plane (UHP, $0^{\circ} < \delta_{CP} < 180^{\circ}$).
- If Δ_{31} is positive (negative), $P_{\mu e}$ can be enhanced (suppressed) by 22% for NO ν A and 8% for T2K.
- If θ_{23} is in HO (LO), $P_{\mu e}$ can be enhanced (suppressed), compared to $\theta_{23}=\pi/4$.
- Since each of the unknowns can take 2 different values, there are 8 combinations of the unknowns.
- If θ_{13} is not known precisely, it'll lead to eight-fold degeneracy in $P_{\mu e}$.
- Since θ_{13} isprecisely known, the degeneracy is less severe.
- These degeneracies are- hierarchy- δ_{CP} degeneracy, octant-hierarchy degeneracy, and octant- δ_{CP} degeneracy.

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation
 - NOvA and T2K
 - Parameter degeneracy
 - 2018 data
 - 2019 data
 - 2020 data
- 2 Resolution of the tension with BSM physics
- 3 Conclusions

Analysis of 2018 data from NO ν A and T2K

- NO ν A published their results with 8.85 (6.9) \times 10²⁰ POT in neutrino (anti-neutrino) mode. [M. Sanchez, Talk given at Neutrino 2018 conference]
- T2K published their results with $14.7(7.6) \times 10^{20}$ POT in neutrino (anti-neutrino) mode. [Abe et al., arXiv: 1807.07891]
- The best-fit point for NO ν A (T2K) was $\sin^2\theta_{23}=0.58$ (0.526) and $\delta_{CP}=30.6^\circ$ (-107.1°) at NH.
- At IH, the best-fit point for NO ν A (T2K) was $\sin^2\theta_{23}=0.58$ (0.530) and $\delta_{CP}=-95.4^{\circ}$ (-81.9°).
- At NH NO ν A disfavoured δ_{CP} values close to -90° .
- T2K ruled out NO ν A best-fit point on $\sin^2\theta_{23} \delta_{CP}$ plane at 95% C.L.
- NO ν A ruled out T2K best-fit point on $\sin^2\theta_{23} \delta_{CP}$ plane at 90% C.L.
- The IH best-fit point of NO ν A (T2K) is allowed at $1\,\sigma$ ($2\,\sigma$).

There was a mild tension between NO ν A and T2K. [Nizam, Bharti, Prakash, Rahaman, Sankar, arXiv: 1811.01210]

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation

 $NO\nu A$ and T2K

Parameter degeneracy

2018 data

2019 data

2020 data

- 2 Resolution of the tension with BSM physics
- Conclusions

Analysis of 2019 data from NO ν A and T2K

- In the 2019 data, the best-fit point of NO ν A was at NH, $\delta_{CP}/\pi = 0^{+1.3}_{-0.4}$ and $\sin^2\theta_{23} = 0.56^{+0.04}_{-0.03}$. [arXiv: 1906.04907]
- For T2K, the best-fit point for NH (IH) was $\delta_{CP}/\pi = -1.89^{+0.70}_{-0.58}~(-1.38^{+0.48}_{-0.54})$, $\sin^2\theta_{23} = 0.53^{+0.03}_{-0.04}.~[\text{arXiv: }1910.03887, 1807.07891]$
- There was a visible difference between the δ_{CP} values from both the experiments.
- ullet Both experiments disfavoured each other's best-fit point at $1\,\sigma$ C.L.

- 1 Evolution of the tension between NO ν A and T2K data
 - Brief introduction to neutrino oscillation

 $NO\nu A$ and T2K

Parameter degeneracy

2018 data

2019 data

2020 data

- 2 Resolution of the tension with BSM physics
- 3 Conclusions

Analysis of 2020 data from NO ν A and T2K

- In the 2020 data, the best-fit point of NO ν A was at NH, $\delta_{CP}=0.82\pi$ and $\sin^2\theta_{23}=0.57$. [A. Himmel, Talk given at Neutrino 2020 conference]
- For T2K, the best-fit point for NH (IH) was $\delta_{CP}=-1.6$, $\sin^2\theta_{23}=0.53$. [P. Dunne, tale given at Neutrino 2020 conference]
- The tension is even stronger as there is no overlap at the $1\,\sigma$ region on $\sin^2\theta_{23}$ plane between the two experiments.

Analysing the tension

- We will take vacuum oscillation (no effect of sign of Δ_{31}), $\theta_{23}=\pi/4$, and $\delta_{CP}=0$, as our reference point: 000.
- Parameter value for which $P_{\mu e}$ is increased (decreased) will be labelled as + (-).
- NH: +, IH: -, HO: +, LO: -, $\delta_{CP} = -90^{\circ}$: +, $\delta_{CP} = +90^{\circ}$: -
- For the POT of 2020 data, the expected number of ν_e , and $\bar{\nu}_e$ appearance events for NO ν A are 76.14, and 32.93 respectively.
- NO ν A observed 82, and 33 ν_e , and $\bar{\nu}_e$ events respectively. The moderate excess in ν_e appearance channel can be explained by three possible solutions in hierarchy-octant- δ_{CP} : A. + +, B. + + -, C. + +.

- The observed $\bar{\nu}_e$ appearance event number is consistent with 000.
- Due to low statistics at $\bar{\nu}_e$ events, other solutions are also allowed at $1\,\sigma$ C.L.
- Exceptions are +-+: minimum $\bar{\nu}_e$ event numbers, and -+-: maximum $\bar{\nu}_e$ event numbers
- Solution A of ν_e appearance data is excluded when analysed with $\bar{\nu}_e$ data.
- The combined analysis of ν_e and $\bar{\nu}_e$ appearance data have solutions: B. ++-, C. -++.
- Combination of appearance and disappearance data give the same solutions.

- The expected number of events for T2K at 000 are 78 for ν_e , and 19 for $\bar{\nu}_e$.
- T2K observed 105 for ν_e , and 15 for $\bar{\nu}_e$.
- The large excess can be explained only by the solution: + + +.
- But disappearance data limit $\sin^2 \theta_{23} \le 0.59$.
- Since only about 20% boost is possible from hierarchy, and octant, δ_{CP} firmly anchors itself around $\delta_{CP}=-90^\circ$ to accommodate the large excess in the observed ν_e appearance event number.
- The small reduction in observed $\bar{\nu}_e$ appearance event is consistent with +++ solution.

- 1 Evolution of the tension between NO ν A and T2K data
- 2 Resolution of the tension with BSM physics

Non-unitary mixing of 3 active neutrinos Non-standard NC interaction during propagation of neutrino through matter

3 Conclusions

- 1 Evolution of the tension between NO ν A and T2K data
- 2 Resolution of the tension with BSM physics Non-unitary mixing of 3 active neutrinos Non-standard NC interaction during propagation of neutrino through matter
- 3 Conclusions

Motivation

- The short baseline anomalies like LSND anomalies or reactor anomalies can be explained by the existence of one or more sterile neutrino.
- Simplest model consists of 3 + 1 neutrino mixing.
- 4 mass eigenstates: ν_1 , ν_2 , ν_3 and ν_4 with masses m_1 , m_2 , m_3 , m_4 , where $m_4 >> m_1$, m_2 , m_3 and $\Delta_{41} = 0.1 10 \, \text{eV}^2$.
- If the extra neutrinos are isosinglet neutral heavy leptons (NHL), in the minimum extension of SM, they would not take part in neutrino oscillation.
- The admixture of such leptons in the charged current weak interactions would affect the neutrino oscillations, and the neutrino oscillations would be described by an effective 3×3 non-unitary mixing matrix.

Motivation

- Do the data fron NO ν A and T2K exclude non-unitarity?
- If not, can we reach a better agreement between the two experiments with non-unitary mixing?

Non-unitary mixing matrix

$$N = N_{NP} U_{3\times 3} = \begin{bmatrix} \alpha_{00} & 0 & 0 \\ \alpha_{10} & \alpha_{11} & 0 \\ \alpha_{20} & \alpha_{21} & \alpha_{22} \end{bmatrix} U_{\text{PMNS}}, \qquad (2.4)$$

We will consider the effects of α_{00} , $\alpha_{10}=|\alpha_{10}|e^{i\phi_{10}}$ and α_{11} only.

Resolution of the tension

- We analysed the NO ν A and T2K data with both unitary and non-unitary hypotheses. [Miranda, Paquini,Rahaman, Razzaque, arXiv: 1911.09398; Rahaman, Razzaque, Sankar, arXiv: 2201.03250]
- We fix all the parameter at the combined best-fit of NO ν A and T2K, and vary δ_{CP} in the range $[-180^\circ:180^\circ]$.
- The result will be represented as bi-event plots.

- 1 Evolution of the tension between NO ν A and T2K data
- 2 Resolution of the tension with BSM physics

Non-standard NC interaction during propagation of neutrino through matter

3 Conclusions

Theoretical background

- Non-standard interactions can arise as a low energy manifestation of new heavy states of a more complete model at high energy, or it can arise due to light mediators.
- NC NSI during propagation is represented by dimension 6 operator:

$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_{F}\epsilon_{\alpha\beta}^{fC}\left(\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}\right)\left(\bar{f}\gamma_{\mu}P_{C}f\right),\tag{2.5}$$

The effective Hamiltonian for neutrino propagation in matter in presence of NSI can be written in the flavour basis as

$$H = H_{\text{vac}} + H_{\text{mat}} + H_{\text{NSI}}, \tag{2.6}$$

where

$$H_{\text{vac}} = \frac{1}{2E} U \begin{bmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{bmatrix} U^{\dagger}; H_{\text{mat}} = \sqrt{2} G_F N_e \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \tag{2.7}$$

$$H_{\rm NSI} = \sqrt{2}G_{\rm F}N_{\rm e} \begin{bmatrix} \epsilon_{\rm ee} & \epsilon_{\rm e\mu} & \epsilon_{\rm e\tau} \\ \epsilon_{\rm e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\rm e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{bmatrix}. \tag{2.8}$$

Resolution of the tension

- We considered the effects of $\epsilon_{e\mu}=|\epsilon_{e\mu}|e^{i\phi_{e\mu}}$, and $\epsilon_{e\tau}=|\epsilon_{e\tau}|e^{i\phi_{e\tau}}$ one at a time.
- NO ν A and T2K data were analysed with NSI hypothesis.[Chatterjee, Palazzo, arXiv: 2008.04161; Denton et al.,arXiv: 2008.01110; Rahaman et al., arXiv: 2201.03250]
- The results will be presented as bi-event plots.

 $\epsilon_{e\mu}$

 $\epsilon_{e au}$

IFIC Instituto de Física Corpuscular (Univ. de Valéncia CSIC)

- 1 Evolution of the tension between NO ν A and T2K data
- 2 Resolution of the tension with BSM physics
- 3 Conclusions

- The tension between T2K and NO ν A only grew stronger with time.
- T2K observes a large excess in its observed ν_e appearance event number, as compared to the expected event number at the reference point 000.
- This excess can be only explained by the solution +++.
- NO ν A sees a moderate excess in its ν_e appearance events, compared to the expected events at 000. This moderate excess, combined with the $\bar{\nu}_e$ appearance data, can be only explained by the solutions ++-, and -++
- This tension can be resolved by BSM physics like non-unitary mixing or NSI
- Lorentz invariance violation can also be a possible way to resolve the tension. [Rahaman, arXiv: 2103.04576; Rahaman et al., arXiv: 2201.03250]

Thank You!